

Technologies for Transforming Building Materials into Carbon Sinks

Marina Sofos, Ph.D.

Program Director @ ARPA-E

ARPA-E Carbon Negative Building Materials Workshop - Day 2

March 25, 2021

Day 1 Recap — Themes in What We Heard from You

- Performance Advantage
- Durability and Service Life
- Multifunctional Materials
- Transparency
- Uncertainty

Day 1 Recap – Some Ways We're Thinking Now...

Categorization:

- Flooring assembly that meets specific structural requirements over a given span
- Materials that meet both structural and insulating property requirements
- Enabling multifunctionality

Metrics:

Emphasize reproducibility over final deliverable size

• LCA:

- Achieve performance first and then quantify LCA
- BUT the LCA then needs to cover the full life, not just A1-A3

Markets & Drivers:

- Institutional buildings may be good first market
- Can't have equivalent replacements: products must be better than incumbent

Updates to Materials Metrics

	Revised
Categorization	 Building Elements Assemblies: Flooring, Walls, etc. Performance / Purpose (ex. Structural) Multiple Options
Performance Metrics	 Min 200% carbon storage (LCA A1-A3) (100% for cementitious materials) Durability testing – accelerated aging / wear Code-based standard performance Fire safety rating Health / toxicity assessment (in service and production) Cradle-to-grave LCA Optional: region-based testing included (ex. meet seismic performance for CA)
Sample Requirements	 Large enough samples for required test specimen count per test Samples made on different days to test performance repeatability

Framework for Materials Under Consideration

HIGH Limited ability to impact building Already pre-commercial and In time to make a difference by 2050 carbon and will likely end up as policy/private funding required to niche product(s) further scale/deploy DEPLOYMEN Enormous potential, but need Unlikely to make an impact and proof of concepts to move faster will take too long to develop **ARPA-E** sweet spot

LOW

Today's Objectives

- Evaluate proposed material categories based on ARPA-E framework (i.e. likelihood of deployment vs. potential impact)
- Prioritize greatest technical challenges within a selected category
- Identify any critical technologies/pathways that are missing

Truly Neutral Concrete

- ▶ **Problem:** Concrete is the biggest contributor to CO₂ emissions in the built environment.
- Opportunity: With the high volume of concrete, a carbon storing alternative would be impactful.
- Question: Where could ARPA-E funding have a meaningful impact?
 - Synthetic aggregates? Biological routes?
 Something else?

Mass Timber on the Rise

PERSPECTIVE

https://doi.org/10.1038/s41893-019-0462-4

Buildings as a global carbon sink

Galina Churkina 1,2*, Alan Organschi, Christopher P. O. Reyer 2, Andrew Ruff, Kira Vinke, Zhu Liu 5, Barbara K. Reck 1, T. E. Graedel 1 and Hans Joachim Schellnhuber

Opportunity: Mass timber is at the heart of thinking about buildings as a carbon sink.

Questions:

- Are technical advances needed in mass timber?
- Where else are innovations in forestry products emerging?

Other Uses for Agriculture Residues

 Opportunity: From Chris Magwood: using just the straw waste in the country would offset all transportation emissions

Questions:

- Building materials and techniques using agricultural residues exist but are seldom implemented. What are the barriers?
- How can we merge the carbon benefits of using agricultural residues with the convenience and comfort of modern materials?

New Uses for Carbon

Problems:

- Long-term carbon storage is needed.
- Methane pyrolysis may result in large amounts of solid carbon.
- Opportunity: Emerging technologies in carbon materials from greenhouse gasses could produce high carbon density storage.
- Questions: Can these materials be produced cheaply enough to find application in building materials?

Resins, Adhesives, and Matrix: the Connecting Thread

Problem: Making materials from many of these sources require high-emissions resins, adhesives, or matrix.

Opportunity: Focused effort in this area could benefit many different classes

of materials.

• Questions:

- What is already being done?
- Where are new solutions most needed?

Polymers

- Problem: Polymers have become ubiquitous in buildings and are almost exclusively petroleum derived.
- Opportunity: Increasing awareness and demand for better products.
- Questions:
 - Is there a less toxic alternative to PVC?
 - Can bioderived and recycled products compete?

Day 2 Agenda

-	
12:00 – 12:20 PM	Day 1 Summary and Day 2 Objectives <i>Marina Sofos, ARPA-E</i>
12:20 – 12:30 PM	Introduction to ARPA-E Tech-to-Market Madhav Acharya, ARPA-E
12:30 – 1:30 PM	Products to Market Panel Moderator: Josh Agenbroad, Rocky Mountain Institute Ryan Spies, Saint-Gobain Jerry Uhland, CalPlant Michael Dosier, bioMASON Kaustubh Pandya, Brick & Mortar Ventures
1:30 – 1:40 PM	Break
1:40 – 2:00 PM	Uses of Agricultural and Forestry Products in Thermosetting Polymers Dean Webster, North Dakota State University

2:00 – 2:20 PM Lignin-Based Carbon Materials – Potential High Value and High Volume Applications
Zhiyong Cai, USDA Forest Products Laboratory

Day 2 Agenda (cont.)

2:20 – 2:40 PM	Mycotecture: shaping the built environment with mycelium
----------------	--

Christopher Maurer, redhouse

2:40 – 3:00 PM Reduce and Recapture CO2: Sustainable Approach for

Macro- and Nano-Scale Carbon in Building Materials

Anna Douglas, SkyNano

Hicham Ghossein, Endeavor Composites

3:00 – 3:15 PM Break

3:15 – 4:30 PM Breakout Sessions Day 2

4:30 – 5:00 PM Report out and Closing Remarks

Marina Sofos, ARPA-E

Today's Breakouts

Other Materials

Facilitator:
Doug Wicks

Notetaker: Kalena Stovall

Moderator: Christina Chang

Wood/Purpose Grown Materials

Facilitator: Marc von Keitz

Notetaker: Dave Lee

Moderator: Emily Yedinak

Carbon Materials

Facilitator: Scott Litzelman

Notetaker: Rose Cox-Galhotra

Moderator: Ian Robinson

Agricultural Residues

Facilitator: Dave Babson

Notetaker: Laura Demetrion

Moderator: Elizabeth Schoenfelt-Troein

Concrete/Concrete Replacements

Facilitator: Joe King

Notetaker: Kate Pitman

Moderator: Grace Ryan

More opportunities to engage with us

- RFI just issued (closing on April 21 @ 5 pm ET), share with your networks!
 https://arpa-e-foa.energy.gov/
 - For ideas not covered here, check out OPEN FOA https://arpa-e.energy.gov/open-2021
 - Virtual ARPA-E Summit May 24-27, 2021
 https://www.arpae-summit.com/Home
 - Subscribe to the ARPA-E Newsletter
 https://arpa-e.energy.gov/news-and-media/newsletter

"We shape our buildings; thereafter, our buildings shape us."

-Winston Churchill

THANK YOU!

Marina Sofos, Madhav Acharya Advanced Research Projects Agency-Energy

Kate Pitman, Kalena Stovall
Booz Allen Hamilton

